| Abstract |
Bone is a very important material in our bodies and those of other animals. It is known to consist of a matrix of protein (primarily, collagen) in which are embedded inorganic crystals of calcium phosphate. There is, at present, very little known about how the protein matrix and calcium phosphate crystals stick together, yet if they did not stick together in some way, the calcium phosphate crystals would all sink to the bottom of the bone and the bone would be floppy, and of very little use in supporting our bodies. The interface between the protein and calcium phosphate is thus of key importance in understanding how bone works as a material, how it is tough, and rigid enough to support our bodies and their movement, yet surprisingly resistant to fracture. We will use a measurement method called solid-state NMR to (a) identify which part of the protein matrix interacts with the calcium phosphate and (b) how far apart the matrix and crystals are. We will also look at how much force is required to break the link between the protein and calcium phosphate and see what effect diseases, such as osteoarthritis and osteoporosis have. The hope is that this will give clues as to how to treat these diseases as well as give us important information when building mathematical models to describe the functioning of bone as a material. |