European Companies Search Engine
UK funding (£348,729): Development of transgenic mice to determine the role of intelectins as effectors of gastrointestinal nematode expulsion Ukri1 Jan 2007 UK Research and Innovation, United Kingdom
Overview
Text
Development of transgenic mice to determine the role of intelectins as effectors of gastrointestinal nematode expulsion
| Abstract | Parasitic nematode worms that infest the gastrointestinal tract are an important human health concern in developing countries. Nematodes are a major problem for sheep and cattle farming in the UK, and world-wide, as they are increasingly resistant to anti-parasitic drugs. An alternative approach to drug-induced parasite control is to boost the natural immune reaction to parasites. Parasitism and allergy induce the same type of immune response, which has been studied extensively in rodents. The cells and signals involved are well known, but the way that these change the environment of the parasite and cause it to be expelled is less clear. Our recent work shows that the immune response to intestinal parasites results in levels of a protein, intelectin-2, which is produced by gut epithelial cells in greater amounts than any other protein in the vicinity of the parasite. In contrast, the protein intelectin-1 is present both before and after infection. We wish to test the hypothesis that intelectins, and particularly intelectin-2, contribute significantly to the immune expulsion of gut nematodes, while, at the same time, being aware of and testing alternative hypotheses on the function of this abundant protein. The project will aim to answer the following questions: 1. Does the increase in intelectin protein at the site of worm infestation influence the rate at which the parasite is expelled? 2. How does intelectin interact with other substances, such as mucus, in a way that could enhance rejection of parasites? 3. Do intelectins have anti-bacterial properties? We will use genetic engineering to create three new mouse lines in which to investigate the role of intelectins. Firstly, we will create a mutant of the 'C57BL/6' mouse strain, which naturally lacks the intelectin-2 gene, and make the mutant express the intelectin-2 protein. Furthermore, we will make 'knockout' mice on the 129 strain, which normally express intelectin-1 and intelectin-2, and make one line which is no longer able to make intelectin-2, and a second line that is unable to make either intelectin. By infecting these mice with worms and studying the rate of expulsion of the worms from the intestine of the mouse, we will be able to determine whether the ability to make intelectin proteins affects parasite rejection. We will also examine the properties of purified intelectins to see how they might relate to possible parasite rejection mechanisms. For example, does intelectin bind to the parasite or to bacteria? Does intelectin bind to mucus to make it thicker and help expel the parasite by engulfing it? At the end of the project, we will be in a position to say whether or not intelectins contribute significantly to parasite expulsion, and will know more of their properties. If intelectin does indeed help to expel parasites, then understanding how it works will help in the future design of vaccines to boost its parasite expelling effect. In terms of allergy, if intelectin causes mucus thickening, then it may similarly contribute to the life-threatening mucus plugging of the airways in acute asthma, and will therefore become an important new drug target. |
| Category | Research Grant |
| Reference | BB/E009069/1 |
| Status | Closed |
| Funded period start | 01/01/2007 |
| Funded period end | 31/12/2009 |
| Funded value | £348,729.00 |
| Source | https://gtr.ukri.org/projects?ref=BB%2FE009069%2F1 |
Participating Organisations
| University of Edinburgh | |
| MOREDUN RESEARCH INSTITUTE | |
| MRC Human Genetics Unit |
The filing refers to a past date, and does not necessarily reflect the current state. The current state is available on the following page: University OF Edinburgh CHARITY, Edinburgh.
The visualizations for "University of Edinburgh - UK funding (£348,729): Development of transgenic mice to determine the role of intelectins as effectors of gastrointestinal nematode expulsion"
are provided by
North Data
and may be reused under the terms of the
Creative Commons CC-BY license.